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SINGULAR TRAJECTORY IN THE PROBLEM OF SIMPLE PURSUIT ON A MANIFOLD* 

A.A. MELIKYAN and N.V. OVAKIMYAN 

Games with at most twa minimal geodesics connecting two points in their 
phase space (manifold) are considered. It is shown that singular 
trajectories - envelopes of geodesics - may develop in such games. A 
necessary condition for the existence of singular motions [non-emptiness 
of the set (3.5)) is derived as a certain requirement from the 
geometrical properties of the phase manifold of the game. An algorithm 
to construct the singular motions is proposed and the Hamiltonian 
equations describing these motions are given. The sufficiency of the 
proposed construction is investigated numerically for particular 
examples. The paper generalizes and extends the previous study fl/. 

lumber of pursuit games, the optimal trajectories of the players axe geodesics in 
of phase states of the game 12, 3/. This is so, in particular, when the players 

In a 
the space 
are represented by velocity-controlled points in Euclidean space with spherical constrarnts 
on the magnitude of the velocities. In this case, there always exists a unique geodesic (a 
straight segment) connecting any two locations of the players: the optimal velocities of the 
players are directed along this connecting line. The geodesic property of optimal 
trajectories may be lost if the connecting geodesic is non-unique for some set of player 
positions. This case is observed, for instance, in the presence of a bounded obstacle, when 
the players are barred from reaching a bounded region in the Euclidean phase space /l/. 

1. Simple puPsuit game. Assume that the points (players) P and E in some n-dimensional 
manifold M (the space of the game) move according to the equations 

P: x- == a, u s I& (x}; V-1) 
E: y’ = v, v E E, (y), 0 < Y < 1 

E, (s) -= {u E R”: (G (2) u, u) < a”} 

where x, y E R" are the local coordinates of the points P and E, E, (I), a > 0, is an 
ellipsoid. The positive definite matrix G(r) is a metric tensor of the manifold M; the 
scalar product is denoted by parentheses. 

Thus, the magnitude of the velocity of the point P does not exceed unity and the velocity 
of the point E: does not exceed v >O. Since y < 1, the point P in genesal has an oppor- 
tunity to reduce the distance L(x, y) between P and E. The objective of player P is to 
ensure the fastest possible approach of the points P and E to a distance 1, i.e., to satisfy 
the condition 

for some instant of time T>& zero is taken as the initial instant. Player E attempts 
to maximi .ze the capture time T. We assume that L ix f(% Y (01) > 1. The non-negative number L 
is called the capture radius /2/. 

The distance between points P and E is determined by means of the following 

(1.2) 

variational 
problem /4/: 

where the minimum is over all piecewise-smooth curves joining the points P and E: E (+) = {E fs): 
$0 < s < %1. 

We will assume that the global minimum in (1.3) is achieved for any pair of points of 
the manifold. The next basic assumption regarding the geometry of the manifold is that the 
global minimum in (1.3), if it is non-unique, can be represented in the form 
QPr.ikl.Matem.Mekhan.,55,1,54-62,1991 
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L fx, Y) = min LL’ (x, Y), L- (x, y)l (14 
where L* are the distances at which local minima are reached in (1.3) (Fig.1); the functions 

.L* (x9 Y) are smooth and are defined in some neighbourhood of the pair (x, y), which differs 
for each pair. Assumption (1.4) is satisfied, for instance, in the case when the points move 
in a Euclidean plane that contains a bounded convex obstacle /I/ or on two-dimensional surfaces 
of revolution in a three-dimensional space. 

Relationships (1.1) and (1.2) describe a differential game 
with payoff function (functional) equal to the time of the process. 

*;WJ 

The game may be treated as a combination of two optimal games 
with guaranteed results for players P and E IS/; the minimax 
(maximin) problem uses positional controls of player P (E) and 
piecewise-continuous functions of time for player E(P). The 

optimal positional controls of the players are optimal (E-optimal) 

Fig.1 
guaranteeing strategies in one of these games. The procedure for 
constructing the trajectory (the motion) for a given pair of con- 
trols is described in IS/. 

For some subset of positions (x, y), the motion with velocities of maximum magnitude 
along the tangent to the geodesic is optimal for both players. This is established using the 
following relationships. Consider the time derivative of the distance (1.3) in the direction 
of motion of system (l.l), 

L’ = (L,, u) + (LII, u); L, = G (x) a, L, = G (~1 b (1.5) 

a = a (2, y) = --E‘ (s*)/ I E’ (s*) Ix 

Here a and b are the unit vectors tangent to the geodesic at its two ends and pointing outward 
(Fig.1). The formulas for the partial derivatives L, and 
of the first variation of the functional (1.3) ,/4f. 

L, in (1.5) follow from the form 
Evaluation of the minimax or the maximin 

of the derivative (1.5) subject to the constraints (1.11 gives 

min,max, L' = min, (L,, u) + max, (L,,, v) s= -1 f Y 

U* (5, y) = --a (2, y), v* (I, Y) = v b (x, y) 

(3.6) 

Here u*and v* are the unique vectors on which the extrena in (1.6) are reached. 
Thus, the function 

s (& Y) = IL (s, Y) - Zl/(f -9) (1.7) 

equal to the time of pursuit along the geodesic satisfies the basic equation of the theory of 
differential games at the points of differentiability of the length L (x, I/) /5/: 

min,,max, s' = max,min,S' = - 1 

uEE,(& uEE,(y) 
(1.8) 

Using relationships (1.6)-(1.81, we can show the strategy (1.6) guarantees for player P 
a pursuit time not exceeding (1.7); if representation (1.4) exists, the strategy may be based 
on either function L+,L-. For player E, however, strategy (1.6) in general does not guarantee 
the time (1.7). This is so, for instance, when M is the n-dimensional Euclidean spaceA"and 
the formulas take the simple form 

L (% Yl = I 2 - Y I; u* (I, Y) = (Y - x)/ I y - 5 1 

v* (5, Y) = v (y - x)/ 1 y - I / 

where Iz 1 = Vr(r,) is the vector Euclidean norm. This is asymmetry between the players is 
attributed to the fact that player P minimizes a quantity proportional to L while (1.4) also 
requires minimization. 

Property (1.4) in general allows player P to guarantee, 
a pursuit time less than (1.7); 

for some subset of positions (2, y), 
the pursuit strategy on this subset may differ from the control 

that recommends along the geodesic. 

2. l'hs ?Nk?essary Cadittim fOP optfndity. Denote the product M X M by 2; 
the points of the manifold Z will be denoted by z,z = (x, y) E Z. 
Z a so-called terminal set &c Z. 

Condition (1.2) defines in 
It can be shown that in a sufficiently small neighbourhood 
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of the set Zr, the optimal result(the value of the game) is S(z) (1.7) guaranteed by the 
strategies (1.6). 

We assume that a continuous value v(z),a~Z\ ZT, exists in the game (l.l), (1.2). The 
unknown region where S(z) is the value of the game will be denoted by Z,c Z, S(z) = V(z), ZE 

Zl. The function S(z) and the strategies (1.6) for z E z, are called a primary solution. 
Denote by r,, the subset of Z where the minimum (1.3) is attained on two extremals, i.e., we 
have the equality L+(z) = L-(z) for the functions from (1.4). The intersection T,, (1 Z, is, 
in general, non-empty. The necessary condition (1.8) cannot be used to identify the points 
of the set rOthat are contained in Z,,_ because the function S (z) in general is non-differen- 
tiable for z E r. even for smooth L*(z). Retaining the notation v' for the derivative of 
the value V (z) with respect to the direction (u, 0)~ P', V' = V'(z, U, II), we can write the 
following generalized necessary conditions of optimality /5/: 

min,max, V' (z, u, U) > -1 > max,min, V(z, U, 71) 

UEE,(& UE.G(Y) 
(2.1) 

For some classes of games, conditions of the form (2.1) together with boundary conditions 
are necessary and sufficient conditions for the optimality of the function V(z) /5/. In 
this paper, relationships (2.1) are used as local necessary conditions of optimality. 

Without giving a complete proof, we will elucidate the meaning of relationship (2.1). 
Reverse strict inqualities in (2.1) are ruled out: if the left-hand reverse inequality were 
violated, player P, say, could apply for a sufficiently short time in the neighbourhood of 
the point z of a fixed control u (2) on which the outer minimum would be attained and the 
player would thus achieve a strictly better result in the game, contradicting the assumption 
of the optimality of V(z). 

At the points of smoothness of the function V(z), relationships (2.1) reduce to 
equalities (1.8) for the function V. Evaluation of the extrema in (1.8) using the notation 
p = (V,, V,) E Pn leads to the basic Bellman-Isaacs equation of the form 

F (z, P) + 1 = 0; F(z, P) - - J/V-’ (4 V,, V,) i (2.2) 

v 1/V’ (Y) V,, V,)= - I q lx -I- v I ‘II, I_ ; 
q = 11 (z. p) = G-’ (I) V,, 11, = 9 (z, p) = G-’ (y) V,; 

u* (Z? PI = -4 I q Ix1 u* (Z? P) = VW Illi ly 

From equalities (1.5) we obtain the following Hamilton-Jacobi equations (eikonal equations) 
for the geodesic distance (1.3) /4/: 

(G-’ (5) L,, L,) = 1, (G-l (y) L,, L,) = 1 
(2.3) 

By equalities (2.3), the function (1.7) satisfies Eq.(2.2). The optimal motions in the 
game are determined in the region of smoothness of the function S (z) by the characteristic 
equations corresponding to the partial differential Eq.(2.2) /4/: 

z’ =x Fp, p' = -F,; z = (5, y) E I?*", 

P = (V,, V,) E R2” 

(2.4) 

3. The edge of manifoM r. Structure of the solution. We will use relationships (2.1) to 
identify the points of the set r,that are contained in Z,. We denote by a+ (z), b* (z) the unit 
tangent vectors to two geodesics at their ends (Fig.1, see (1.5)). The directional derivative 
of the function (1.7) at the points of the set r,, using (l-4), (1.51, takes the-form 

S' = min IS+', Se’1 (3.1) 

s** (z) = I(&* (z), U) + (L,* (4, 4101 - y) 
The functions S* have the form (1.7) with L* substituted for L. 

Lenmvl 1. The maximin (2.1) at the points of the manifold r, satisfies the condition 

max,min,min IS+‘, S-‘I = I-1 + Y I b+ i- b- Iv /21/(1 -v)< -1 

vEEV(!/), uEEr(z) 

The last inequality follows from the condition I b+ -t b- Iv < 2, which is obvious for unit 
vectors bC, b-. Thus, all the points of the set rO satisfy the right-hand condition in (2.1). 

Theorem 1. The minimax (2.1) for ZE ro can be represented in the form 



min,max,min IS", S-'1 = min r--i, Q, (z)l, 

u c E, (z), u cs Ev (y); 

aJ (z) sz & [- j ai + a- 1% -t- v 16’ + b- Is] = F (2, Rz (zf); 

f?(z) = ‘iB (St (4 + s- (4) 
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(3.2) 

and the minimum over u is achieved on a unique vector u* =-(a" + a-)/ 1 a+ + a- 1% for Q, (2) < 
-1 and on two vectors U* = -a+,~*=-a- for Q(Z)> -1. For m(z) =--I, all three 
vectors produce a minimum. At the points of the intersection I?,, n 2, we have the inequality 

d, (2) f 1 G F (2, R, (2)) -j- 1 > 0 (3.3) 

Thus, the primary solution region 2,includes only a part Y,of the manifold Y,: 

r, = (7‘ E 2: Is+ (z) = s- (2). Qt (z) > -1) (3.4) 

Denote by B the edge of the manifold rl, whose points satisfy the equalities 

I a+ (z) + a- (z) ix - v I b+ (z) -I- b- (2) Iv = 2 (1 - Y), 

.I%+ (2) = I,- (z) 

(3.5) 

Condition (3.5) enables us to define a manifold I in which the velocity-controlled pursuer 
can reduce the capture time (1.7) by exploiting the special geometry of the manifold, which 
restricts the manoeuverability of the evader. 

If the phase space of the game is a circular cylinder, say, we can show that the set (3.5) 
is empty and r, is identical with Yo. In the pursuit game in a Euclidean plane with a bounded 
convexobstacle /l/or on a convex two-dimensional cone, the set B is non-empty (see Sect.5). 

Assuffle that the set B is non-empty. Assume, as in 111, that the manifold B is the edge 
of two branches I'+, l? of a singular equivocal surface, as shown in the diagram in Fig.2. 

An.equivocal surface /l, 3, 61 is a switching fdis- 
continuity) surface of optimal controls of the two players 
which contains singular optimal trajectories. If one of 
the players (that controlling the given surface /6/) does 
not switch when the phase point reaches the equivocal 
surface, optimal sliding along the surface is obtained; if 
the player switches, the optimal trajectory transversely 
recedes in the opposite direction from the surface. In 
problems with simple motion of the players, when the 
extrema (1.8) are reached on unique vectors, the optimal 
trajectories necessarily approach the equivocal surface 
with tangency /6/. 

The space Z can be represented in the form of the sum 
2 = 2, + l? -i-Z,, Y = I'+ i-X'-; for the points z E 22, 
player P strictly improves the result (1.7). This hypo- 

Fig.2 thesis concerning the structure of solutions of the game 
(l-l), (1.2) relies on the necessary conditions of optimal- 
ity (1.8), (2.3), (2.2), (3.3) and the conditions of the 

following section: whether this system of necessary conditions is complete, i.e., produces a 
unique solution, must be separately proved in each particular case, in general by numerical 
integration of the equations of the singular characteristics. 

P. Simgutap dharaetez+stic equations. Thus, the following necessary optimality conditions 
in equality form are satisfied on the unknown surface I?: 

F, (z, p) zm F (z, p) + 1 = 0, F, (2, V) = V - S (z) = o 

F-1 (s. P) = IFIF,) = (F, (~9 ~17 P - q (4) = 0 (Q (2) = S, (z)) 

(4.1) 

The first equality is a Bellman-Isaacs equation, the second is the condition of con- 
tinuity of the value of the game , and the third is the condition of tangency of the surface J? 
to the optimal trajectory in the region Z,/l, 6/. Curly braces in (4.1) are Jacobi brackets 
in the (z, p, V) space (Poisson brackets if there is no dependence on Y). 

By the method developed in /7, 8/, three equalities of the form Fi(z, p, v) = 0 are 
sufficient to derive the equations of the singular trajectories forming the manifold r of 
codimension unity in Z-space. The required equations are Hamiltonian equations with the 
Hamiltonian (apart from a non-zero multiplier) 
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To construct the surface r, we trace from every point of the edge B the solution of the 
system 

z' = H p> P’ = -H: - Hvp, v’ = (p, HP) 

having first determined for each point ZE B the corresponding value p(z). The branch 
r+ (I?) is constructed by replacing S in (4.1) with the function S+ (Se). 

Using the functions (4.1) in (4.2) and normalizing the Hamiltonian H so that the multi- 
plier of F, equals 1, we obtain the equations of singular motion in the form 

(4.3) 

The last equation v' = (p, HP) splits off. We stress that Eqs.(4.3) are written using 
only two functions F, and S, because F,z V - S. 

The initial values of z, p(z) for system (4.3) are given by the following proposition. 

Lemcf 2. For ZEB on the branch r+ the vectors p = qt,p = (Q' + q-)/2= R, satisfy the 
equalities F, = 0, F_, = 0 of system (4.1). On the branch r- the corresponding soltuions 
are P = q-, p = (q+ + q-)/2 = R,. 

The lemma is proved by direct computation using relationships (2.2), (2.3), (3.2), (3.5) 
and the symmetry of the matrix G-l. 

Thus, 

p-$(q++q-)=R, (4.4) 

is the initial value of p (the conjugate vector) for constructing both branches r+ and r-. 
The fact that a common solution (4.4) exists for both branches implies that the gradient of 
the value V(z) is continuously continuable from the region Z, to the edge B. Other solutions 
correspond to the primary solution of the problem. 

If G is the identity matrix in some region, then the function F in (2.2) for this region 
has the form 

(4.5) 

i.e., it is homogeneous of degree unity as a function of the vector p. The corresponding 
system is simplified and takes the form /l, 6/ 

z' = F,, p . = [(LF,, FpHF,,q, dl (p - q) (4.6) 

where S,; and F,, are symmetric matrices of second partial derivatives (Hessians). 
Optimal motions in the region Z, can be constructed by integrating system (2.4) in reverse 

time with the initial conditions z = 9, p =p(#),z’ F r. Another construction technique is 
by taking discontinuously p’ = -F,: at some instant of time in the process of integrating 
system (4.3), i.e., passing to the system (2.4). If this jump is made at the initial instant 
of time, we obtain a trajectory which leaves a point on the edge B with the initial value 
(4.4) of the conjugate vector. The collection of these trajectories forming some surface I'* 
partitions the region 2, into two subregions Z, = Z,+ + I?* + Z,-. The surface r* is tangent 
to both surfaces r+ and r-at the points of the edge B. 

5. Ezumptes. As the phase space of the game (l.l)-(1.4) consider a circular cylinder 
in the three-dimensional Euclidean space. In this case, for the vectors a*, b* in (3.5) we 
have the equality a++ a- = - (b++ b-) Since (a+ +a-\<29 the set B defined by equality 
(3.5) is empty. Thus, for a cylinder, pursuit and evasion by geodesics are optimal. 

Assume that the phase space of the game is the Euclidean plane with a convex bounded 
obstacle /l/. We can show that the set B in this case is non-empty and it is a two-dimensional 
manifold with an edge (equivalent to the phase space). A numerical analysis of both traject- 
ories is carried out in /l/. 

Finally, let the phase space of the game be a two-dimensional convex cone in the three- 
dimensional Euclidean space with the induced metric. By deforming the convex cone, we can 
map it to a two-sided two-sheeted plane angle (conserving the geodesic length). The analysis 
of the game for a plane angle is simpler, and the rest of the discussion focuses on this case. 
Let 1 = 0. Capture occurs when the points P and E are on the same side of the plane and 
coincide. 

Take a Cartesian rectangular system of coordinates with the origin at the vertex of the 
angle and the abscissa axis pointing along the bisector (Fig.3). The angle a is between 
O<a<n. The geodesics are straight segments (if the points P and E are on the same sheet) 
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or two-segment polygonal lines (if the points E' and E are on different sides). Let (I~, z2) 
and (y,, ys) be the coordinates of the points P and E, respectively, and let the two points 
lie on different sides of the plane. The two shorest geodesics crossing different rays of 
the angle (Fig.3) have the lengths 

Here a = tgal2. Formula (5.1) can be obtained from simple geometrical considerations. 
The equality L+ = L- defining the points of the set I0 (see Sect.2) gives 

&, = --Y,ly, 

l.e., the points P and E located on different sheets lie on rays that are symmetrical about 
the abscissa axis. Deforming the two-sheeted angle, we can make these rays overlap with the 
sides of the angle or with the bisector (the abscissa axis); the latter enables us to reduce 
any point of the set I0 to the form P(z,, o),E(~,,O). 

Differentiating the functions (5.1), we can find the vectors .*, b* of the form (1.5) 
(G is the identity matrix) and form the first equation in (3.5). The functions (5.1) are 
positively homogeneous functions of degree unity of the vectors x, y, and therefore 

in (3.5) are homogeneous of degree 0. 
I a+ f a- I, 

1 b+ j- b- 1 Therefore, one of the parameters I, 1 .Y* 

defining a point of the set B, as noted above, may be set equal to a given value. Let y,=l. 
Then relationship (3.5) reduces to an equation for I,, which is solvable in finite form. 

There is no characteristic size in this problem, and the normalization condition 
can be satisfied by an appropriate choice of the length scale. 

y, = 1 

In the problem with an obstacle 
Ill, the obstacle determines a characteristicsize and the problem does not have this self- 
similarity property. 

Fig.3 I 

Fig.4 

In general, to construct singular trajectories forming the equivocal surface, we must 
integrate Eq.(4.3) in reverse time with the initial conditions (see (4.4)) 

z (0) = 20, I, (0) = '/a (q+ (2") + 9- (+)), 20 E B 

for all points z0 in the set B. Our analysis shows that an arbitrary point ZQ of the set B 

is reducible to the form ~0 = hi, Z* = (xl*, 0. l,o), h> 0, where 
mentioned above. 

zl* is the root of Eq.(3.5) 
Moreover, Eqs.(4.3) with the function F (4.5) and the dependence S(Z)= U(1- 

v), where L is of the form (5.1), are invariant under the change of coordinates and time Z= hk, 
t = hr with any i.>O. 

Thus, by a simple computation, the singular trajectory leaving an arbitrary point of the 
set B may be obtained from the standard trajectory originating from the point z*, i.e., the 
complete synthesis procedure in this game reduces to the construction of two plane curves. 

Such standard trajectories were constructed numerically for a= I,V= llJ.Va,V3 (Fig.4). 
We see that the convexity properties of these trajectories are such that the collection of 
tangent half-lines to these trajectories uniquely sweeps the region zz introduced in Sect.2. 
Formulas (2.2) and (1.6) can thus be used to determine the optimal positional strategies of 
the players in the entire space of the game. 
except the scattering surface I?, 

These controls are single-valued everywhere, 
and the equivocal surface I. A complete analysis of the 

guaranteeing strategies in the neighbourhood of singular surfaces requires a special examin- 
ation. 

Calculations also show that singular trajectories 
to which the trajectories converge very rapidly. 

of the players have straight asymptotes, 
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QUASILINEAR CONFLICT-CONTROLLED PROCESSES WITH NON-FIXED TIME* 

P.V. PROKOPOVICH and A.A. CHIKRII 

We identify a class of conflict-controlled processes /l-3/ for which the 
solving functions of the group pursuit problem /4-7/ are independent of 
the termination time of the game while evader errors cause the process 
to terminate earlier than the guarantee time. Sufficient conditions are 
derived for the solvability of pursuit and evasion problems, and the 
continuity property of the solving functions is studied in detail. The 
sufficient conditions for the pursuit problem to be solvable do not 
include Pontryagin's condition /3, 8/; it is replaced with a weaker 
assumption related to the initial state of the process. The proposed 
procedure enables us to strengthen some known results on the solution of 
group pursuit problems. 

1. The motion of a conflict-controlled object 2 = (21, . ., 2,) in the finite-dimensional 
Euclidean space RY is described by the system of differential equations 

zi' = Aizi + ‘pi (ui, u), zi E R”I, uj E U,, u E V, zi (0) = zio (1.1) 

Here Aj is a given square matrix of order vi, UC and V are non-empty compact subsets in 
the spaces Rpl and R9, respectively, and the function cpi (Ui, v) is continuous in all its 
variables. Here and henceforth, i = 1, 2, . . . . n. 

The terminal set M* consists of the sets M:*, such representable in the form 

Mi* = M,” + Mi (1.2) 

where MP is a linear subspace of the space RYf and M, is a convex compact set in Li - 
the orthogonal complement of M,O’ in R’l. 

We say that the game (1.1) terminates from the initial state 20 = (z,O, . . ., z,O) not later 
than in a time T (2") if measurable functions ni 0) = UI (ZlO, v (1)) E U,, 0 < t < t*. 1* < T (9) 
exist such that zip Mi* for at least one i for any measurable function v(t)~ V, O,< t< 
T (z”), where si (t) is the solution of the system of Eqs.(l.l) corresponding to the pair of 
controls ui (t) u (1) and the initial state zi'. 


